Math 10A

Worksheet, Discussion \#10; Friday, 6/29/2018
Instructor name: Roy Zhao

1 Related Rates

1. A circle's area is expanding at a constant rate of $5 \mathrm{~m}^{2} / \mathrm{s}$. How fast is its radius changing when its area is $100 \pi m^{2}$?

Solution: The area of a circle is given by $A=\pi r^{2}$. Taking the derivative, we have that $A^{\prime}=2 \pi r r^{\prime}$. Now we plug in the values that we are give. We know that the area is increasing at a constant rate of 5 so $A^{\prime}=5$ and when $A=100 \pi$, we know that $r=\sqrt{100}=10$. So $5=2 \pi(10) r^{\prime}$ so $r^{\prime}=\frac{5}{20 \pi}=\frac{1}{4 \pi} \mathrm{~m} / \mathrm{s}$.
2. A conical cup that is 6 cm wide at the top and 5 cm tall is filled with water is punctured at the bottom and water is coming out at a rate of $10^{-6} \mathrm{~m}^{3} / \mathrm{s}$. Initially, the cup is filled How fast is the height of the water changing when the height is 2 cm ?

Solution: If the height of the water is h, then the radius of the cone formed by the water would be $3 / 5 h$ and so the volume of the water cone is $V=\pi / 3(3 / 5 h)^{2} \cdot h=$ $\frac{3 \pi h^{3}}{25}$. Taking the derivative of both sides gives

$$
V^{\prime}=\frac{9 \pi h^{2} h^{\prime}}{25}
$$

and plugging in -10^{-6} for V^{\prime} and $2 \cdot 10^{-2}$ for h gives

$$
-10^{-6}=\frac{9 \pi 4 \cdot 10^{-4} h^{\prime}}{25} \Longrightarrow h^{\prime}=\frac{-1}{144 \pi} \mathrm{~m} / \mathrm{s}
$$

3. A lamppost is $5 m$ tall. A woman who is $2 m$ tall is walking away from it at a constant rate of $10 \mathrm{~cm} / \mathrm{s}$. When she is 2 m away from the lamppost, how fast is her shadow length changing?

Solution: Using similar triangles, if the woman is at a distance d from the lamppost and the shadow height is h, then

$$
\frac{h}{2}=\frac{h+d}{5} \Longrightarrow 2 d=3 h .
$$

Taking the derivative, we have that $2 d^{\prime}=3 h^{\prime}$ and $d^{\prime}=10 \mathrm{~cm} / \mathrm{s}$ so $h^{\prime}=\frac{20}{3} \mathrm{~cm} / \mathrm{s}$.
4. Sand is being dumped in a conical pile whose width and height always remain the same. If the sand is being dumped in at a rate of $2 m^{3} / h r$, how fast is the height of the sand changing when the pile is 10 cm tall?

Solution: Let the height of the pile be h. Then the radius of the pile is $r=\frac{h}{2}$ and the volume of the pile is $V=\frac{\pi r^{2} h}{3}=\frac{\pi h^{3}}{12}$. Taking the derivative gives $V^{\prime}=\frac{\pi}{4} h^{2} h^{\prime}$. Now we plug in 2 for V^{\prime} and 10^{-1} for h to get $h^{\prime}=\frac{800}{\pi} m / h r=\frac{800}{3600 \pi} m / s=\frac{2}{9 \pi} \mathrm{~m} / \mathrm{s}$.
5. A ladder $5 m$ tall is lying against a wall. The bottom of the ladder is pulled out at a rate of $10 \mathrm{~cm} / \mathrm{s}$. How fast is the area of the triangle formed by the ladder, wall, and floor changing when the bottom of the ladder is 3 m away from the wall?

Solution: Let d be how far the bottom of the ladder is away from wall. Then the area of the triangle formed is $\frac{1}{2} \cdot d \cdot \sqrt{25-d^{2}}=A$. Squaring both sides gives $4 A^{2}=d^{2}\left(25-d^{2}\right)$. Now we can take the derivative to get that $8 A A^{\prime}=2 d d^{\prime}(25-$ $\left.d^{2}\right)+d^{2}\left(-2 d d^{\prime}\right)$. When $d=3$, the area is $\frac{1}{2} \cdot 3 \cdot 4=6$ and so

$$
8 \cdot 6 \cdot A^{\prime}=2 \cdot 3 \cdot d^{\prime}(16)+9\left(-6 d^{\prime}\right) \Longrightarrow 48 A^{\prime}=42 d^{\prime} .
$$

Since $d^{\prime}=10^{-1} \mathrm{~m} / \mathrm{s}$, we have that $A^{\prime}=\frac{7}{80} \mathrm{~m} / \mathrm{s}$.
6. A conical volcano is 100 m tall and the base has a radius of 50 m . It is filling with lava at a rate of $\pi \mathrm{m}^{3} / \mathrm{s}$. At what rate is the height of the lava rising with it is 50 m tall?

Solution: Let h be the height of the lava. The we can calculate the volume of the truncated cone by taking the total area and subtracting the missing top cone. The top cone has a height of $100-h$ and radius of $(100-h) / 2$. Thus the volume of the lava is

$$
V(h)=\frac{\pi \cdot 50^{2} \cdot 100}{3}-\frac{\pi \cdot(100-h)^{2} \cdot(100-h)}{2^{2} \cdot 3} .
$$

Taking the derivative, we get that

$$
\frac{d V}{d t}=-\frac{\pi(100-h)^{2}\left(-h^{\prime}\right)}{4} .
$$

Since $V^{\prime}=\pi$, we have that $h^{\prime}=\frac{4}{50^{2}}=\frac{1}{625}$.

2 L'Hopital's Rule

7. Find $\lim _{x \rightarrow \infty}\left(1+\frac{1}{2 x}\right)^{3 x}$.

Solution: We use the trick of turning exponents into products by taking e to the \ln of the function. So doing this gives

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{2 x}\right)^{3 x}=\lim _{x \rightarrow \infty} \exp \left[\ln \left(1+\frac{1}{2 x}\right)^{3 x}\right]=\exp \left[\lim _{x \rightarrow \infty} 3 x \ln \left(1+\frac{1}{2 x}\right)\right] .
$$

Plugging in ∞ gives $\infty \cdot 0$ which is a product indeterminate and so we can turn this product into a quotient. Doing so gives

$$
\begin{aligned}
\lim _{x \rightarrow \infty} 3 x \ln \left(1+\frac{1}{2 x}\right)= & \lim _{x \rightarrow \infty} \frac{\ln \left(1+\frac{1}{2 x}\right)}{(3 x)^{-1}}=\lim _{x \rightarrow \infty} \frac{\frac{1}{1+1 / 2 x}\left(-2(2 x)^{-2}\right)}{-3(3 x)^{-2}} \\
& =\lim _{x \rightarrow \infty} \frac{3}{2+\frac{1}{x}}=\frac{3}{2} .
\end{aligned}
$$

Thus the answer to the original limit is $e^{3 / 2}$.
8. Find $\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}$.

Solution: Plugging in $x=4$ gives $0 / 0$ which is indeterminate. Now we use LHopitals rule to get

$$
\lim _{x \rightarrow 4} \frac{x-4}{\sqrt{x}-2}=\lim _{x \rightarrow 4} \frac{1}{1 /(2 \sqrt{x})}=\lim _{x \rightarrow 4} 2 \sqrt{x}=4
$$

9. Find $\lim _{x \rightarrow 0} \frac{x \tan x}{\sin 3 x}$.

Solution: Plugging in $x=0$ gives $0 / 0$ so using Lhopitals gives

$$
\lim _{x \rightarrow 0} \frac{x \tan x}{\sin 3 x}=\lim _{x \rightarrow 0} \frac{x \sec ^{2}(x)+\tan x}{3 \cos (3 x)}=\frac{0}{3}=0 .
$$

10. Find $\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x \tan x}$.

Solution: Plugging in 0 gives $0 / 0$ and so we can use LHopitals rule to get

$$
\lim _{x \rightarrow 0} \frac{\sin \left(x^{2}\right)}{x \tan x}=\lim _{x \rightarrow 0} \frac{2 x \cos \left(x^{2}\right)}{x \sec ^{2}(x)+\tan x} .
$$

Plugging in 0 again gives $0 / 0$ yet again, so we use LHopital's again to get

$$
\lim _{x \rightarrow 0} \frac{2 x \cos \left(x^{2}\right)}{x \sec ^{2}(x)+\tan x}=\lim _{x \rightarrow 0} \frac{2 \cos x^{2}-4 x^{2} \sin x^{2}}{2 \sec ^{2}(x)+2 x \tan x \sec ^{2}(x)}=\frac{2-0}{2+0}=1 .
$$

11. Find $\lim _{x \rightarrow 0} \frac{x^{2} e^{x}}{\tan ^{2} x}$.

Solution: Plugging in 0 gives $0 / 0$ so we use LHopitals to get

$$
\lim _{x \rightarrow 0} \frac{x^{2} e^{x}}{\tan ^{2} x}=\lim _{x \rightarrow 0} \frac{2 x e^{x}+x^{2} e^{x}}{2 \tan x \sec ^{2} x} .
$$

Plugging in 0 again gives $0 / 0$ so we use LHopitals again to get

$$
\lim _{x \rightarrow 0} \frac{2 x e^{x}+x^{2} e^{x}}{2 \tan x \sec ^{2} x}=\lim _{x \rightarrow 0} \frac{x^{2} e^{x}+4 x e^{x}+2 e^{x}}{2 \tan x(2 \sec x \cdot \sec x \tan x)+2 \sec ^{4} x}=\frac{2}{2}=1 .
$$

12. Find $\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-\sqrt{x+1}\right)$.

Solution: Plugging in ∞ gives $\infty-\infty$ which is an indeterminate. This is not a quotient so we can't use LHopital's yet. But we can try to multiply by the conjugate to get

$$
\lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+1}-\sqrt{x+1}\right)=\lim _{x \rightarrow \infty} \frac{x^{2}+1-(x+1)}{\sqrt{x^{2}+1}+\sqrt{x+1}}
$$

Now we plug in ∞ to get ∞ / ∞ so we can use LHopitals and get

$$
=\lim _{x \rightarrow \infty} \frac{2 x-1}{x / \sqrt{x^{2}+1}+1 /(2 \sqrt{x+1})}=\lim _{x \rightarrow \infty} \frac{2 x-1}{1 / \sqrt{1+1 / x^{2}}+1 /(2 \sqrt{x+1})}=\frac{\infty}{1+0}=\infty .
$$

Note that we could have solved it after multiplying by the conjugate by dividing the top and bottom by the largest power of x we saw, which was x^{2}. Doign so gives

$$
\operatorname{dim}_{x \rightarrow \infty} \frac{x^{2}-x}{\sqrt{x^{2}+1}+\sqrt{x+1}}=\lim _{x \rightarrow \infty} \frac{1-1 / x}{\sqrt{1 / x^{2}+1 / x^{4}}+\sqrt{1 / x^{3}+1 / x^{4}}}=\infty / 0=\infty .
$$

13. Find $\lim _{x \rightarrow 0^{+}} \ln x \cdot \tan x$.

Solution: Plugging in 0 gives $(-\infty) \cdot 0$. So, we can write it as

$$
\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\cot x}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-\csc ^{2}(x)}=\lim _{x \rightarrow 0^{+}} \frac{-\sin ^{2} x}{x} .
$$

Plugging in 0 gives $0 / 0$ so we can use LHopitals again to get

$$
=\lim _{x \rightarrow 0^{+}} \frac{-2 \sin x \cos x}{1}=0
$$

14. Find $\lim _{x \rightarrow 0^{+}} x^{\sin x}$.

Solution: We don't like having x raised to some function of x so we do our trick of taking e to the ln of the function. This gives

$$
\lim _{x \rightarrow 0^{+}} x^{\sin x}=\lim _{x \rightarrow 0^{+}} \exp \left(\ln x^{\sin x}\right)=\exp \left[\lim _{x \rightarrow 0^{+}} \sin x \ln x\right] .
$$

Calculating the inner limit gives

$$
\lim _{x \rightarrow 0^{+}} \sin x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\csc (x)}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{-\cot (x) \csc (x)}=\lim _{x \rightarrow 0^{+}} \frac{-\sin ^{2}(x)}{\cos (x) x}
$$

Plugging in 0 again gives $0 / 0$ so we use LHopitals again to get

$$
\lim _{x \rightarrow 0^{+}} \frac{-2 \sin x \cos x}{\cos x-x \sin x}=0
$$

So our original answer is $e^{0}=1$.

